Sales Tel: +63 945 7983492  |  Email Us    
SMDC Residences

Air Residences

Features and Amenities

Reflective Pool
Function Terrace
Seating Alcoves

Air Residences

Green 2 Residences

Features and Amenities:

Wifi ready study area
Swimming Pool
Gym and Function Room

Green 2 Residences

Bloom Residences

Features and Amenities:

Recreational Area
2 Lap Pools
Ground Floor Commercial Areas

Bloom Residences

Leaf Residences

Features and Amenities:

3 Swimming Pools
Gym and Fitness Center
Outdoor Basketball Court

Leaf Residences

Contact Us

Contact us today for a no obligation quotation:


+63 945 7983492
+63 908 8820391

Copyright © 2018 SMDC :: SM Residences, All Rights Reserved.


































































ST0-116 dumps with Real exam Questions and Practice Test - smresidences.com.ph

Great Place to download 100% free ST0-116 braindumps, real exam questions and practice test with VCE exam simulator to ensure your 100% success in the ST0-116 - smresidences.com.ph

Pass4sure ST0-116 dumps | Killexams.com ST0-116 real questions | http://smresidences.com.ph/

ST0-116 Symantec Data Loss Prevention 11(R) Technical Assessment

Study Guide Prepared by Killexams.com Symantec Dumps Experts


Killexams.com ST0-116 Dumps and Real Questions

100% Real Questions - Exam Pass Guarantee with High Marks - Just Memorize the Answers



ST0-116 exam Dumps Source : Symantec Data Loss Prevention 11(R) Technical Assessment

Test Code : ST0-116
Test Name : Symantec Data Loss Prevention 11(R) Technical Assessment
Vendor Name : Symantec
: 176 Real Questions

can i discover dumps Q & A of ST0-116 examination?
nicely, I did it and that i cant trust it. I could in no way have passed the ST0-116 with out your assist. My score changed intoso high i used to be amazed at my overall performance. Its just because of you. thanks very an awful lot!!!


those ST0-116 dumps works in the actual check.
a few rightly men cant carry an alteration to the worlds way however they are able to best let you know whether you have got been the only guy who knew a way to try this and that i need to be regarded in this world and make my own mark and i have been so lame my entire way but I know now that I wanted to get a skip in my ST0-116 and this could make me famous perhaps and yes i am brief of glory however passing my A+ exams with killexams.com became my morning and night glory.


Passing ST0-116 exam became my first experience but great enjoy!
I subscribed on killexams.com with the aid of the suggession of my buddy, as a way to get some greater useful resourcefor my ST0-116 checks. As quickly as I logged on to this killexams.com I felt relaxed and relieved on account that I knew this could help me get thru my ST0-116 test and that it did.


can i discover real take a look at questions Q & A present day ST0-116 examination?
To become a ST0-116 Certified, I was in push to pass the ST0-116 exam. I tried and failed last 2 attempts. Accidently, I got the killexams.com material through my cousin. I was very impressed with the material. I secured 89%. I am so happy that I scored above the margin mark without difficulty. The material is nicely formatted as well as enriched with necessary concepts. I think it is the great choice for the exam.


Questions had been exactly identical as I got!
It is a captains job to steer the ship just like it is a pilots job to steer the plane. This killexams.com can be called my captain or my pilot because it steered me in to the right direction before my ST0-116 test and it was their directions and guidance that got me to follow the right path that eventually lead me to success. I was very successful in my ST0-116 test and it was a moment of glory for which I will forever remain obliged to this online study center.


Extract contemporary all ST0-116 path contents in layout.
When I had taken the decision for going to the exam then I got a good support for my preparation from the killexams.com which gave me the realness and reliable practice ST0-116 prep classes for the same. Here, I also got the opportunity to get myself checked before feeling confident of performing well in the way of the preparing for ST0-116 and that was a nice thing which made me perfect ready for the exam which I scored well. Thanks to such things from the killexams.


you recognize the fine and fastest manner to pass ST0-116 examination? I got it.
I although that if I may additionally want to clear their ST0-116 check and sure this is as soon as I got here to recognise with my antique top class buddy that killexams.com is the one that would be the boon for me because it were given me my intelligence finally again which I had misplaced for some time and that i desire that this may in no manner get over for me getting my ST0-116 check cleared in the end.


Surprised to see ST0-116 dumps!
killexams.com gave me an excellent preparation tool. I used it for my ST0-116 exam and got a maximum score. I love the way killexams.com does their exam preparation. Basically, this is a dump, so you get questions that are used on the real ST0-116 exams. But the exam simulator and the practice exam format help you memorize it all very well, so you end up learning things, and will be able to draw upon this knowledge in the future. Very good quality, and the exam simulator is very light and user friendly. I didnt come across any issues, so this is excellent value for money.


it's far genuinely first rate experience to have ST0-116 state-statemodern dumps.
To get success in ST0-116 exam. human beings accept as true with that a scholar need to possess sharp brain. although it is authentic but it isnt absolutely actual in view that along with the scholar, the instruct or the trainer ought to also be rightly certified and educated. I experience blessed that i used to be familiar with this killexams.com in which I met such brilliant educators who taught me how to clear my ST0-116 test and were given me through them with a breeze. I thank them with the bottom of my coronary heart.


Get the ones ST0-116 actual exam questions and answers! Do now not get ripplatestf
I might take a privilege to mention Many Many way to all team individuals of killexams.com for presenting the sort of tremendous platform made to be had to us. With the help of the web questions and caselets, i have efficaciously cleared my ST0-116 certification with 81% marks. It become truly beneficial to apprehend the sort and patterns of questions and reasons provided for solutions made my principles crystal smooth. Thank you for all the manual and maintain doing it. All of the quality killexams.


Symantec Symantec Data Loss Prevention

Symantec’s Cloud entry security broker and information Loss Prevention options receive FedRAMP "In system” Designation | killexams.com Real Questions and Pass4sure dumps

Symantec (Nasdaq: SYMC), the realm's main cyber security company, today announced it has acquired an "In technique” designation from the Federal chance and Authorization administration application (FedRAMP) for its Cloud entry security broking service (CASB) and data Loss Prevention (DLP) solutions below sponsorship of the department of native land safety (DHS).

Named a pacesetter via business analysts, Symantec’s CASB solution allows for agencies to confidently leverage cloud applications and services in a secure, comfy and compliant method. It offers visibility into shadow IT, enforces governance over statistics in cloud applications and gives insurance plan in opposition t threats focused on cloud bills and functions. Symantec’s DLP solution offers a single console and unified policy management for every channel – cloud, endpoints, storage, e mail and net – to assist give protection to sensitive facts anywhere it is used throughout these channels.

"Symantec continues to be dedicated to assisting executive agencies give protection to their most constructive asset – their facts,” stated Chris Townsend, vp of federal at Symantec. "We take into account the exciting challenges their federal shoppers face and are making strategic investments to support them securely and confidently migrate to the cloud. Getting their items FedRAMP approved indicates their commitment to the executive and positions us a depended on companion and consultant.”

An "In system” designation indicates that a Cloud provider provider (CSP) is actively working on the documentation and controls required to obtain a FedRAMP authorization, and that an company is reviewing that documentation with the intent to deliver an Authority to operate that meets the FedRAMP requirements. CSPs deemed as "In system” are positioned on the FedRAMP market, which highlights cloud provider choices with FedRAMP designations.

CASB and DLP are the latest Symantec choices to move in the course of the FedRAMP authorization procedure. In February, Symantec’s e mail safety provider – govt bought FedRAMP authorization, and Symantec has a roadmap centered for its different cloud security tools and items to go in the course of the FedRAMP certification system.

Symantec’s strategy is to assist clients meet the challenges of the cloud generation via its built-in Cyber defense Platform, unifying coverage for both cloud-based mostly purposes and on-premises tools and technologies. This enables a cohesive method to possibility management, presenting obligatory visibility, context and manage to achieve a far better protection baseline for the executive. Symantec plans to bring this means on AWS GovCloud at the average baseline.

About Symantec

Symantec organisation (NASDAQ: SYMC), the area's main cyber protection business, helps companies, governments and individuals comfy their most critical records at any place it lives. agencies the world over look to Symantec for strategic, built-in solutions to preserve in opposition t sophisticated attacks across endpoints, cloud and infrastructure. Likewise, a world community of greater than 50 million americans and households count on Symantec's Norton and LifeLock product suites to offer protection to their digital lives at home and across their devices. Symantec operates one of the world's biggest civilian cyber intelligence networks, enabling it to look and give protection to towards the most superior threats. For more information, please visit www.symantec.com or join with us on facebook, Twitter, and LinkedIn.


Symantec statistics Loss Prevention: Product overview | killexams.com Real Questions and Pass4sure dumps

Symantec presents a complete strategy to information loss prevention that covers both on-premises and cloud environments, in addition to cell devices.

The antivirus supplier's method to statistics loss prevention (DLP) has advanced rather just a little over the final decade. Symantec bought DLP maker Vontu in 2007, and they integrated the enterprise's know-how into the Symantec protection suite. Symantec's DLP providing later expanded to covered numerous components, together with Symantec DLP for Cloud Storage, Symantec DLP Cloud prevent for Microsoft workplace 365, Symantec information Loss Prevention for Endpoint, Symantec records Loss Prevention for cellular, Symantec records Loss Prevention network and Symantec facts Loss Prevention for Storage.

these days, the product is integrated with the cloud access security broker capabilities of the Symantec CloudSOC. The current version of Symantec data Loss Prevention, 14.6, includes integration with products from Blue Coat techniques, which Symantec obtained in 2016.

Deployment

Symantec statistics Loss Prevention's structure incorporates content-mindful detection servers and endpoint brokers, plus a unified administration platform. The suite is scalable to lots of of thousands of users and gadgets. it may possibly even be deployed on premises, in hybrid cloud environments and as a managed provider through a Symantec managed safety service issuer associate.

Amazon internet capabilities (AWS) guide allows for DLP content material detection servers to be deployed on AWS infrastructure. This enables agencies to monitor and protect delicate facts found in AWS-hosted circumstances of Microsoft trade and SharePoint.

On the different conclusion of the spectrum, the DLP administration server, content material detection servers and Oracle database can also be deployed on a single actual server for small businesses or far off workplaces, thereby decreasing hardware and maintenance charges.

cellular insurance policy

The Symantec facts Loss Prevention suite also includes monitoring for cellular contraptions and mobile email via Symantec DLP for mobile with cell e-mail monitor and cellular evade. cell email display screen helps Android and iOS contraptions and may notice when employees download delicate corporate records to their mobiles devices the usage of the Microsoft alternate ActiveSync protocol.

commercial enterprise and endpoint insurance plan

normal commercial enterprise architectures are supported with a couple of tools and accessories within the Symantec facts Loss Prevention suite.

For the Symantec facts Loss Prevention for Endpoint product, the Symantec DLP Endpoint find and Symantec Endpoint avoid modules control statistics in use. These modules perform native scanning, detection and monitoring for macOS, windows 7, windows 8 and windows 10 machines.

On the endpoints, these modules also computer screen and manage cloud storage sync folders, Outlook and Lotus Notes electronic mail purchasers, HTTP/HTTPS and FTP protocol site visitors, removable storage media -- akin to USB, media transfer protocol, CompactFlash and SD playing cards -- plus eSATA and FireWire for moveable drives. The modules also video display and manage digital desktops, reminiscent of Citrix, Microsoft Hyper-V and VMware.

statistics in motion is addressed with the aid of Symantec DLP network display screen, community stay away from for e-mail and network evade for net. information at rest is monitored using Symantec DLP network discover, community protect, statistics perception and the statistics perception Self-provider Portal.

Cloud aspects

The suite helps cloud deployments with Symantec DLP for Cloud Storage and Cloud stay away from for Microsoft workplace 365.

Symantec DLP for Cloud Storage is an information-at-leisure device that scans field company and commercial enterprise bills. it might probably aid investigate the place sensitive suggestions is being saved, the way it's used and who is receiving it. It will also be configured to assist clients correct policy violations by way of inserting visible tags on field files so clients can remediate policy violations the usage of the Symantec DLP Self-provider Portal.

The Cloud File Sync and Share feature maintains users from syncing sensitive statistics data from their computer to cloud file sharing sites corresponding to field, Dropbox, Google power, Hightail, iCloud and Microsoft OneDrive.

Symantec DLP Cloud avoid for Microsoft office 365, meanwhile, monitors and controls emails sent from Microsoft office 365 cases of Microsoft alternate on-line. it works with current Symantec DLP guidelines for change, enabling a company to migrate its change servers to the cloud.

summary

The Symantec facts Loss Prevention suite is designed to meets the wants of tremendous companies, in addition to small and medium-sized companies. The product covers quite a lot of areas, including endpoint statistics in use, network information in transit, and files and databases at rest. Symantec statistics Loss Prevention addresses on-premises, cell and cloud records and can be deployed on both physical servers -- home windows Server, red Hat business Linux and others -- and cloud infrastructures, corresponding to AWS. Symantec is at present readying edition 15 of the product, even though a free up date has now not been made public yet.

businesses interested in Symantec facts Loss Prevention may still contact the dealer or an authorized reseller partner for pricing and other suggestions.


Symantec to offer protection to personal counsel From Leaving the iPad(R) With New records Loss Prevention solution for drugs | killexams.com Real Questions and Pass4sure dumps

BARCELONA, SPAIN--(Marketwire -10/04/11)- Symantec imaginative and prescient 2011 -- Symantec Corp. (NASDAQ: SYMC - news) nowadays announced it is planning to offer Symantec statistics Loss Prevention for pill, the first complete records loss prevention (DLP) solution for the monitoring and insurance policy of delicate tips on tablet computer systems. attainable first for the Apple iPad, Symantec information Loss Prevention for tablet will support remedy one of the vital pressing problems facing safety groups today by offering content-aware protection for this remarkably accepted new corporate endpoint. The solution is designed to preserve user productiveness and give protection to a firm's private records on the same time.

examine extra certain blog submit:

in line with Symantec's fresh State of security Survey, businesses are grappling with new security challenges stemming from the proliferation of pills in the business. Of those surveyed, 47 percent pointed out mobile computing changed into making it more difficult to provide on-line safety, and 45 percent said the "consumerization of IT" changed into a priority. The latter class contains new technologies that cross over from purchaser to enterprise markets, with pills changing laptops because the excellent subject. As users carry pills into the enterprise and entry the company community, it is faced with the challenge of retaining delicate company records on those endpoints.

click to Tweet: Symantec launches DLP for pill: http://bit.ly/nRY66h

Symantec facts Loss Prevention for pill will permit clients to make the most of the drugs they are disturbing while monitoring and controlling the transmission of personal facts from these instruments with content material focus. The product is designed to allow organizations to guide work and personal use at the same time as across company and personal e mail, internet communications, and customary functions attainable for the iPad. The insurance policy will extend to the equipment and counsel on it regardless of whether the consumer is related by the use of 3G or Wi-Fi. help for the Android pill working gadget is additionally scheduled to be purchasable next 12 months.

Symantec records Loss Prevention for pill could be the newest addition to Symantec DLP and cellular administration options. The product is designed to let current Symantec DLP consumers leverage their current investment via employing the same guidelines and administration infrastructure. The company additionally offers a complete set of encryption solutions ranging from full disk encryption and detachable storage to email and server solutions. These consist of the currently introduced Symantec PGP Viewer for iOS. The viewer makes it possible for employees of organizations with Symantec PGP commonplace Server in vicinity to read encrypted messages on their favored Apple iOS instruments including the iPad and iPhone as an example, govt group contributors can acquire and think about encrypted copies of a sales file with assurance that both its privacy and security are intact.

prices"With the large boom in tablet adoptions, purchasers have struggled the way to lengthen assistance protection to this new consumer tool because it makes its way onto the business networks," referred to artwork Gilliland, senior vice chairman, assistance protection neighborhood, Symantec. "Symantec statistics Loss Prevention for pill will allow IT to superior help their companies in adopting this new know-how, whereas also holding mighty protections for their delicate tips."

"while CISOs and security companies need to be seen as enterprise enablers who embody the newest productivity equipment, first they should be capable of be certain the private information on these gadgets may be blanketed," mentioned Jon Oltsik, foremost analyst, business approach group. "The extension of DLP merits to the most recent corporate endpoint, the iPad, will help them to satisfy both sides of the equation."

Availability and Pricing Symantec facts Loss Prevention for tablet is expected to be obtainable for the iPad in early 2012. The product might be priced per tablet. help for the Android tablet working system is scheduled to comply with. Symantec PGP Viewer for iOS is an Apple iOS software at the moment attainable for down load from the Apple App keep.

related

connect with Symantec

About Symantec Symantec is a world chief in presenting security, storage and methods management options to assist patrons and companies at ease and manipulate their suggestions-driven world. Their software and functions offer protection to in opposition t greater dangers at greater facets, more absolutely and effectively, enabling confidence anyplace information is used or stored. more counsel is available at www.symantec.com.

Story continues

ahead searching Statements: Any forward-searching indication of plans for items is preliminary and all future unencumber dates are tentative and are subject to trade. Any future liberate of the product or planned changes to product capability, performance, or feature are field to ongoing contrast via Symantec, and may or may additionally no longer be applied and will no longer be regarded enterprise commitments by way of Symantec and should no longer be relied upon in making deciding to buy selections.

word TO EDITORS: if you would like additional information on Symantec organisation and its items, please talk over with the Symantec information Room at http://www.symantec.com/news. All expenditures noted are in U.S. greenbacks and are legitimate only within the u.s..

Symantec and the Symantec emblem are logos or registered emblems of Symantec organisation or its associates within the U.S. and other nations. different names may be trademarks of their respective house owners.

Technorati TagsSymantec, drugs, records loss prevention, iPad facts protection, information breach, information coverage


While it is very hard task to choose reliable certification questions / answers resources with respect to review, reputation and validity because people get ripoff due to choosing wrong service. Killexams.com make it sure to serve its clients best to its resources with respect to exam dumps update and validity. Most of other's ripoff report complaint clients come to us for the brain dumps and pass their exams happily and easily. They never compromise on their review, reputation and quality because killexams review, killexams reputation and killexams client confidence is important to us. Specially they take care of killexams.com review, killexams.com reputation, killexams.com ripoff report complaint, killexams.com trust, killexams.com validity, killexams.com report and killexams.com scam. If you see any false report posted by their competitors with the name killexams ripoff report complaint internet, killexams.com ripoff report, killexams.com scam, killexams.com complaint or something like this, just keep in mind that there are always bad people damaging reputation of good services due to their benefits. There are thousands of satisfied customers that pass their exams using killexams.com brain dumps, killexams PDF questions, killexams practice questions, killexams exam simulator. Visit Killexams.com, their sample questions and sample brain dumps, their exam simulator and you will definitely know that killexams.com is the best brain dumps site.

Back to Braindumps Menu


050-728 questions and answers | 642-584 bootcamp | 70-332 real questions | 050-ENVCSE01 pdf download | 70-767 practice questions | HH0-130 sample test | M2010-727 Practice test | 1Z0-516 exam questions | 922-093 study guide | E22-214 braindumps | C2010-657 test prep | HP2-K26 Practice Test | 000-M235 real questions | C9560-654 questions and answers | 920-328 dump | LOT-805 brain dumps | 000-562 braindumps | 000-M248 study guide | FN0-202 braindumps | M2040-669 VCE |


Take a gander at these ST0-116 real question and answers
We are doing battle to giving you actual Symantec Data Loss Prevention 11(R) Technical Assessment exam questions and answers, alongside explanations. Each on killexams.com has been confirmed by Symantec certified specialists. They are exceptionally qualified and confirmed people, who have numerous times of expert experience identified with the Symantec exams.

We have their specialists operating ceaselessly for the gathering of real test questions of ST0-116. All the pass4sure Questions and Answers of ST0-116 collected by their team are verified and updated by their Symantec certified team. they have an approach to stay connected to the candidates appeared within the ST0-116 exam to induce their reviews regarding the ST0-116 exam, they have an approach to collect ST0-116 exam tips and tricks, their expertise regarding the techniques utilized in the important ST0-116 exam, the mistakes they wiped out the important exam then improve their braindumps consequently. Click http://killexams.com/pass4sure/exam-detail/ST0-116 Once you bear their pass4sure Questions and Answers, you will feel assured regarding all the topics of exam and feel that your information has been greatly improved. These killexams.com Questions and Answers are not simply practice questions, these are real test Questions and Answers that are enough to pass the ST0-116 exam first attempt. killexams.com Discount Coupons and Promo Codes are as under; WC2017 : 60% Discount Coupon for all exams on website PROF17 : 10% Discount Coupon for Orders larger than $69 DEAL17 : 15% Discount Coupon for Orders larger than $99 SEPSPECIAL : 10% Special Discount Coupon for All Orders If you are inquisitive about success passing the Symantec ST0-116 exam to begin earning? killexams.com has forefront developed Symantec Data Loss Prevention 11(R) Technical Assessment test questions that will make sure you pass this ST0-116 exam! killexams.com delivers you the foremost correct, current and latest updated ST0-116 exam questions and out there with a 100 percent refund guarantee. There are several firms that offer ST0-116 brain dumps however those are not correct and latest ones. Preparation with killexams.com ST0-116 new questions will be a best thing to pass this certification test in straightforward means.

killexams.com have their experts Team to guarantee their Symantec ST0-116 exam questions are dependably the most current. They are at the whole extraordinarily familiar with the exams and testing consciousness.

How killexams.com maintain Symantec ST0-116 exams updated?: they have their uncommon procedures to realize the maximum recent exams statistics on Symantec ST0-116. Now after which they touch their accomplices who're especially at ease with the exam simulator recognition or once in a while their customers will email us the latest enter, or they were given the most current update from their dumps carriers. When they discover the Symantec ST0-116 exams changed then they updates them ASAP.

On the off prep that you honestly come up quick this ST0-116 Symantec Data Loss Prevention 11(R) Technical Assessment and might choose no longer to sit tight for the updates then they will give you full refund. however, you should send your score answer to us with the goal that they will have a exam. They will give you full refund quick amid their working time when they get the Symantec ST0-116 score document from you.

Symantec ST0-116 Symantec Data Loss Prevention 11(R) Technical Assessment Product Demo?: they have both PDF model and Testing Software. You can exam their product web page to perceive what it would seem that like.

At the point when will I get my ST0-116 cloth once I pay?: Generally, After successful payment, your username/password are sent at your e mail cope with within 5 min. It may also take little longer in case your answers postpone in charge authorization.

killexams.com Huge Discount Coupons and Promo Codes are as underneath;
WC2017 : 60% Discount Coupon for all tests on website
PROF17 : 10% Discount Coupon for Orders extra than $69
DEAL17 : 15% Discount Coupon for Orders extra than $ninety nine
DECSPECIAL : 10% Special Discount Coupon for All Orders


ST0-116 | ST0-116 | ST0-116 | ST0-116 | ST0-116 | ST0-116


Killexams EE0-021 real questions | Killexams 351-050 VCE | Killexams HP0-J14 study guide | Killexams 117-302 free pdf | Killexams HPE6-A43 free pdf | Killexams HP2-B85 bootcamp | Killexams 000-646 pdf download | Killexams P5050-031 Practice Test | Killexams HP3-C35 cheat sheets | Killexams ST0-303 real questions | Killexams 000-M01 questions answers | Killexams HP2-E27 Practice test | Killexams MB3-208 practice test | Killexams 00M-662 study guide | Killexams TB0-110 dumps | Killexams M8060-655 exam prep | Killexams TMPTE dump | Killexams 00M-604 test questions | Killexams HP0-621 braindumps | Killexams 000-314 exam prep |


killexams.com huge List of Exam Braindumps

View Complete list of Killexams.com Brain dumps


Killexams 70-343 dumps questions | Killexams 1Z0-430 real questions | Killexams 000-997 exam prep | Killexams M2020-745 Practice Test | Killexams HP0-815 real questions | Killexams ICDL-EXCEL braindumps | Killexams 9A0-384 brain dumps | Killexams 3M0-212 Practice test | Killexams 000-886 practice questions | Killexams 9L0-504 practice questions | Killexams JN0-411 questions answers | Killexams HP5-H01D practice exam | Killexams 000-851 braindumps | Killexams HP2-E47 free pdf download | Killexams 00M-235 test questions | Killexams 1Z1-514 free pdf | Killexams 9A0-318 mock exam | Killexams AVA questions and answers | Killexams 000-M75 brain dumps | Killexams HP0-D14 study guide |


Symantec Data Loss Prevention 11(R) Technical Assessment

Pass 4 sure ST0-116 dumps | Killexams.com ST0-116 real questions | http://smresidences.com.ph/

Identiv's (INVE) CEO Steven Humphreys on Q4 2017 Results - Earnings Call Transcript | killexams.com real questions and Pass4sure dumps

No result found, try new keyword!Add to this their first acquisition in years of 3VR [Technical Difficulty ... more RFID transponders, more loss prevention platforms. But longer term when you think about it, the real problem in securit...

2018 Digital Health Year in Review: Focus on Care Coordination and Reimbursement | killexams.com real questions and Pass4sure dumps

Updated: May 25, 2018:

JD Supra is a legal publishing service that connects experts and their content with broader audiences of professionals, journalists and associations.

This Privacy Policy describes how JD Supra, LLC ("JD Supra" or "we," "us," or "our") collects, uses and shares personal data collected from visitors to their website (located at www.jdsupra.com) (our "Website") who view only publicly-available content as well as subscribers to their services (such as their email digests or author tools)(our "Services"). By using their Website and registering for one of their Services, you are agreeing to the terms of this Privacy Policy.

Please note that if you subscribe to one of their Services, you can make choices about how they collect, use and share your information through their Privacy Center under the "My Account" dashboard (available if you are logged into your JD Supra account).

Collection of Information

Registration Information. When you register with JD Supra for their Website and Services, either as an author or as a subscriber, you will be asked to provide identifying information to create your JD Supra account ("Registration Data"), such as your:

  • Email
  • First Name
  • Last Name
  • Company Name
  • Company Industry
  • Title
  • Country
  • Other Information: They also collect other information you may voluntarily provide. This may include content you provide for publication. They may also receive your communications with others through their Website and Services (such as contacting an author through their Website) or communications directly with us (such as through email, feedback or other forms or social media). If you are a subscribed user, they will also collect your user preferences, such as the types of articles you would like to read.

    Information from third parties (such as, from your employer or LinkedIn): They may also receive information about you from third party sources. For example, your employer may provide your information to us, such as in connection with an article submitted by your employer for publication. If you choose to use LinkedIn to subscribe to their Website and Services, they also collect information related to your LinkedIn account and profile.

    Your interactions with their Website and Services: As is true of most websites, they gather certain information automatically. This information includes IP addresses, browser type, Internet service provider (ISP), referring/exit pages, operating system, date/time stamp and clickstream data. They use this information to analyze trends, to administer the Website and their Services, to improve the content and performance of their Website and Services, and to track users' movements around the site. They may also link this automatically-collected data to personal information, for example, to inform authors about who has read their articles. Some of this data is collected through information sent by your web browser. They also use cookies and other tracking technologies to collect this information. To learn more about cookies and other tracking technologies that JD Supra may use on their Website and Services please see their "Cookies Guide" page.

    How do they use this information?

    We use the information and data they collect principally in order to provide their Website and Services. More specifically, they may use your personal information to:

  • Operate their Website and Services and publish content;
  • Distribute content to you in accordance with your preferences as well as to provide other notifications to you (for example, updates about their policies and terms);
  • Measure readership and usage of the Website and Services;
  • Communicate with you regarding your questions and requests;
  • Authenticate users and to provide for the safety and security of their Website and Services;
  • Conduct research and similar activities to improve their Website and Services; and
  • Comply with their legal and regulatory responsibilities and to enforce their rights.
  • How is your information shared?
  • Content and other public information (such as an author profile) is shared on their Website and Services, including via email digests and social media feeds, and is accessible to the general public.
  • If you choose to use their Website and Services to communicate directly with a company or individual, such communication may be shared accordingly.
  • Readership information is provided to publishing law firms and authors of content to give them insight into their readership and to help them to improve their content.
  • Our Website may offer you the opportunity to share information through their Website, such as through Facebook's "Like" or Twitter's "Tweet" button. They offer this functionality to help generate interest in their Website and content and to permit you to recommend content to your contacts. You should be aware that sharing through such functionality may result in information being collected by the applicable social media network and possibly being made publicly available (for example, through a search engine). Any such information collection would be subject to such third party social media network's privacy policy.
  • Your information may also be shared to parties who support their business, such as professional advisors as well as web-hosting providers, analytics providers and other information technology providers.
  • Any court, governmental authority, law enforcement agency or other third party where they believe disclosure is necessary to comply with a legal or regulatory obligation, or otherwise to protect their rights, the rights of any third party or individuals' personal safety, or to detect, prevent, or otherwise address fraud, security or safety issues.
  • To their affiliated entities and in connection with the sale, assignment or other transfer of their company or their business.
  • How They Protect Your Information

    JD Supra takes reasonable and appropriate precautions to insure that user information is protected from loss, misuse and unauthorized access, disclosure, alteration and destruction. They restrict access to user information to those individuals who reasonably need access to perform their job functions, such as their third party email service, customer service personnel and technical staff. You should keep in mind that no Internet transmission is ever 100% secure or error-free. Where you use log-in credentials (usernames, passwords) on their Website, please remember that it is your responsibility to safeguard them. If you believe that your log-in credentials have been compromised, please contact us at privacy@jdsupra.com.

    Children's Information

    Our Website and Services are not directed at children under the age of 16 and they do not knowingly collect personal information from children under the age of 16 through their Website and/or Services. If you have reason to believe that a child under the age of 16 has provided personal information to us, please contact us, and they will endeavor to delete that information from their databases.

    Links to Other Websites

    Our Website and Services may contain links to other websites. The operators of such other websites may collect information about you, including through cookies or other technologies. If you are using their Website or Services and click a link to another site, you will leave their Website and this Policy will not apply to your use of and activity on those other sites. They encourage you to read the legal notices posted on those sites, including their privacy policies. They are not responsible for the data collection and use practices of such other sites. This Policy applies solely to the information collected in connection with your use of their Website and Services and does not apply to any practices conducted offline or in connection with any other websites.

    Information for EU and Swiss Residents

    JD Supra's principal place of business is in the United States. By subscribing to their website, you expressly consent to your information being processed in the United States.

  • Our Legal Basis for Processing: Generally, they rely on their legitimate interests in order to process your personal information. For example, they rely on this legal ground if they use your personal information to manage your Registration Data and administer their relationship with you; to deliver their Website and Services; understand and improve their Website and Services; report reader analytics to their authors; to personalize your experience on their Website and Services; and where necessary to protect or defend their or another's rights or property, or to detect, prevent, or otherwise address fraud, security, safety or privacy issues. Please see Article 6(1)(f) of the E.U. General Data Protection Regulation ("GDPR") In addition, there may be other situations where other grounds for processing may exist, such as where processing is a result of legal requirements (GDPR Article 6(1)(c)) or for reasons of public interest (GDPR Article 6(1)(e)). Please see the "Your Rights" section of this Privacy Policy immediately below for more information about how you may request that they limit or refrain from processing your personal information.
  • Your Rights
  • Right of Access/Portability: You can ask to review details about the information they hold about you and how that information has been used and disclosed. Note that they may request to verify your identification before fulfilling your request. You can also request that your personal information is provided to you in a commonly used electronic format so that you can share it with other organizations.
  • Right to Correct Information: You may ask that they make corrections to any information they hold, if you believe such correction to be necessary.
  • Right to Restrict Their Processing or Erasure of Information: You also have the right in certain circumstances to ask us to restrict processing of your personal information or to erase your personal information. Where you have consented to their use of your personal information, you can withdraw your consent at any time.
  • You can make a request to exercise any of these rights by emailing us at privacy@jdsupra.com or by writing to us at:

    Privacy OfficerJD Supra, LLC10 Liberty Ship Way, Suite 300Sausalito, California 94965

    You can also manage your profile and subscriptions through their Privacy Center under the "My Account" dashboard.

    We will make all practical efforts to respect your wishes. There may be times, however, where they are not able to fulfill your request, for example, if applicable law prohibits their compliance. Please note that JD Supra does not use "automatic decision making" or "profiling" as those terms are defined in the GDPR.

  • Timeframe for retaining your personal information: They will retain your personal information in a form that identifies you only for as long as it serves the purpose(s) for which it was initially collected as stated in this Privacy Policy, or subsequently authorized. They may continue processing your personal information for longer periods, but only for the time and to the extent such processing reasonably serves the purposes of archiving in the public interest, journalism, literature and art, scientific or historical research and statistical analysis, and subject to the protection of this Privacy Policy. For example, if you are an author, your personal information may continue to be published in connection with your article indefinitely. When they have no ongoing legitimate business need to process your personal information, they will either delete or anonymize it, or, if this is not possible (for example, because your personal information has been stored in backup archives), then they will securely store your personal information and isolate it from any further processing until deletion is possible.
  • Onward Transfer to Third Parties: As noted in the "How They Share Your Data" Section above, JD Supra may share your information with third parties. When JD Supra discloses your personal information to third parties, they have ensured that such third parties have either certified under the EU-U.S. or Swiss Privacy Shield Framework and will process all personal data received from EU member states/Switzerland in reliance on the applicable Privacy Shield Framework or that they have been subjected to strict contractual provisions in their contract with us to guarantee an adequate level of data protection for your data.
  • California Privacy Rights

    Pursuant to Section 1798.83 of the California Civil Code, their customers who are California residents have the right to request certain information regarding their disclosure of personal information to third parties for their direct marketing purposes.

    You can make a request for this information by emailing us at privacy@jdsupra.com or by writing to us at:

    Privacy OfficerJD Supra, LLC10 Liberty Ship Way, Suite 300Sausalito, California 94965

    Some browsers have incorporated a Do Not Track (DNT) feature. These features, when turned on, send a signal that you prefer that the website you are visiting not collect and use data regarding your online searching and browsing activities. As there is not yet a common understanding on how to interpret the DNT signal, they currently do not respond to DNT signals on their site.

    Access/Correct/Update/Delete Personal Information

    For non-EU/Swiss residents, if you would like to know what personal information they have about you, you can send an e-mail to privacy@jdsupra.com. They will be in contact with you (by mail or otherwise) to verify your identity and provide you the information you request. They will respond within 30 days to your request for access to your personal information. In some cases, they may not be able to remove your personal information, in which case they will let you know if they are unable to do so and why. If you would like to correct or update your personal information, you can manage your profile and subscriptions through their Privacy Center under the "My Account" dashboard. If you would like to delete your account or remove your information from their Website and Services, send an e-mail to privacy@jdsupra.com.

    Changes in Their Privacy Policy

    We reserve the right to change this Privacy Policy at any time. Please refer to the date at the top of this page to determine when this Policy was last revised. Any changes to their Privacy Policy will become effective upon posting of the revised policy on the Website. By continuing to use their Website and Services following such changes, you will be deemed to have agreed to such changes.

    Contacting JD Supra

    If you have any questions about this Privacy Policy, the practices of this site, your dealings with their Website or Services, or if you would like to change any of the information you have provided to us, please contact us at: privacy@jdsupra.com.

    As with many websites, JD Supra's website (located at www.jdsupra.com) (our "Website") and their services (such as their email article digests)(our "Services") use a standard technology called a "cookie" and other similar technologies (such as, pixels and web beacons), which are small data files that are transferred to your computer when you use their Website and Services. These technologies automatically identify your browser whenever you interact with their Website and Services.

    How They Use Cookies and Other Tracking Technologies

    We use cookies and other tracking technologies to:

  • Improve the user experience on their Website and Services;
  • Store the authorization token that users receive when they login to the private areas of their Website. This token is specific to a user's login session and requires a valid username and password to obtain. It is required to access the user's profile information, subscriptions, and analytics;
  • Track anonymous site usage; and
  • Permit connectivity with social media networks to permit content sharing.
  • There are different types of cookies and other technologies used their Website, notably:

  • "Session cookies" - These cookies only last as long as your online session, and disappear from your computer or device when you close your browser (like Internet Explorer, Google Chrome or Safari).
  • "Persistent cookies" - These cookies stay on your computer or device after your browser has been closed and last for a time specified in the cookie. They use persistent cookies when they need to know who you are for more than one browsing session. For example, they use them to remember your preferences for the next time you visit.
  • "Web Beacons/Pixels" - Some of their web pages and emails may also contain small electronic images known as web beacons, clear GIFs or single-pixel GIFs. These images are placed on a web page or email and typically work in conjunction with cookies to collect data. They use these images to identify their users and user behavior, such as counting the number of users who have visited a web page or acted upon one of their email digests.
  • JD Supra Cookies. They place their own cookies on your computer to track certain information about you while you are using their Website and Services. For example, they place a session cookie on your computer each time you visit their Website. They use these cookies to allow you to log-in to your subscriber account. In addition, through these cookies they are able to collect information about how you use the Website, including what browser you may be using, your IP address, and the URL address you came from upon visiting their Website and the URL you next visit (even if those URLs are not on their Website). They also utilize email web beacons to monitor whether their emails are being delivered and read. They also use these tools to help deliver reader analytics to their authors to give them insight into their readership and help them to improve their content, so that it is most useful for their users.

    Analytics/Performance Cookies. JD Supra also uses the following analytic tools to help us analyze the performance of their Website and Services as well as how visitors use their Website and Services:

  • HubSpot - For more information about HubSpot cookies, please visit legal.hubspot.com/privacy-policy.
  • New Relic - For more information on New Relic cookies, please visit www.newrelic.com/privacy.
  • Google Analytics - For more information on Google Analytics cookies, visit www.google.com/policies. To opt-out of being tracked by Google Analytics across all websites visit http://tools.google.com/dlpage/gaoptout. This will allow you to download and install a Google Analytics cookie-free web browser.
  • Facebook, Twitter and other Social Network Cookies. Their content pages allow you to share content appearing on their Website and Services to your social media accounts through the "Like," "Tweet," or similar buttons displayed on such pages. To accomplish this Service, they embed code that such third party social networks provide and that they do not control. These buttons know that you are logged in to your social network account and therefore such social networks could also know that you are viewing the JD Supra Website.

    Controlling and Deleting Cookies

    If you would like to change how a browser uses cookies, including blocking or deleting cookies from the JD Supra Website and Services you can do so by changing the settings in your web browser. To control cookies, most browsers allow you to either accept or reject all cookies, only accept certain types of cookies, or prompt you every time a site wishes to save a cookie. It's also easy to delete cookies that are already saved on your device by a browser.

    The processes for controlling and deleting cookies vary depending on which browser you use. To find out how to do so with a particular browser, you can use your browser's "Help" function or alternatively, you can visit http://www.aboutcookies.org which explains, step-by-step, how to control and delete cookies in most browsers.

    Updates to This Policy

    We may update this cookie policy and their Privacy Policy from time-to-time, particularly as technology changes. You can always check this page for the latest version. They may also notify you of changes to their privacy policy by email.

    Contacting JD Supra

    If you have any questions about how they use cookies and other tracking technologies, please contact us at: privacy@jdsupra.com.


    Carrier Testing for Severe Childhood Recessive Diseases by Next-Generation Sequencing | killexams.com real questions and Pass4sure dumps

    Introduction

    Preconception testing of motivated populations for recessive disease mutations, together with education and genetic counseling of carriers, can markedly reduce disease incidence within a generation. Tay-Sachs disease [TSD; Online Mendelian Inheritance in Man (OMIM) accession number 272800], for example, is an autosomal recessive neurodegenerative disorder with onset of symptoms in infancy and death by 2 to 5 years of age. Formerly, the incidence of TSD was 1 per 3600 Ashkenazi births in North America (1, 2). After 40 years of preconception screening in this population, however, the incidence of TSD has been reduced by more than 90% (2–5). Although TSD remains incurable, therapies are available for many severe recessive diseases of childhood. Thus, in addition to disease prevention, preconception testing could enable perinatal diagnosis and treatment, which can profoundly diminish disease severity.

    Although individual Mendelian diseases are uncommon in general populations, collectively, they account for ~20% of infant mortality and ~10% of pediatric hospitalizations (6, 7). Over the past 25 years, 1139 genes that cause Mendelian recessive diseases have been identified (8). To date, however, preconception carrier testing has been recommended in the United States only for five of these: fragile X syndrome (OMIM #300624) in selected individuals; cystic fibrosis (OMIM #219700) in Caucasians; and TSD, Canavan disease (OMIM #271900), and familial dysautonomia (OMIM #223900) in individuals of Ashkenazi descent (9–13). A framework for the development of criteria for comprehensive preconception screening can be inferred from an American College of Medical Genetics (ACMG) report on expansion of newborn screening for inherited diseases (14). Criteria included test accuracy and cost, disease severity, highly penetrant recessive inheritance, and whether an intervention was available for those identified. These criteria are also relevant for expansion of preconception carrier screening. Hitherto, important criteria precluding extension of preconception screening to most severe recessive mutations or the general population have been cost [defined in that report as an overall analytical cost requirement of <$1 per test per condition (14)] and the absence of accurate, sensitive, scalable technologies.

    Target capture and next-generation sequencing (NGS) have shown efficacy and, recently, scalability for resequencing human genomes and exomes, providing an alternative potential paradigm for comprehensive carrier testing (15–22). In genome research, an average depth of sequence coverage of 30-fold has been accepted as sufficient for single-nucleotide polymorphism (SNP) and nucleotide insertion or deletion (indel) detection (15–22). However, acceptable false-positive and false-negative rates for routine use in clinical practice are more stringent and are driven by the intended purpose for which the data are to be used. Data demonstrating the sensitivity and specificity of genotyping of disease mutations, particularly polynucleotide indels, gross insertions and deletions, copy number variations (CNVs), and complex rearrangements, are very limited (20–22). In particular, the accuracy of disease mutation genotypes derived from NGS of enriched targets has been uncertain.

    A recent workshop provided recommendations for qualification of new methodologies for broader population-based carrier screening (23). These were high analytical validity, concordance in many settings, high throughput, and cost-effectiveness (including sample acquisition and preparation). Here, they report the development of a preconception carrier screen for 448 severe recessive childhood disease genes, based on target enrichment and NGS that meets most of these criteria, and use of the screen to assess carrier burden for severe recessive diseases of childhood.

    Results Disease inclusion

    The carrier test reported herein was based on several hypotheses. First, cost-effectiveness was assumed to be critical for test adoption. The incremental cost associated with increasing the degree of multiplexing was assumed to decrease toward an asymptote. Thus, very broad coverage of diseases was assumed to offer optimal cost-benefit. Second, comprehensive mutation sets, allele frequencies in populations, and individual mutation genotype-phenotype relationships have been defined in very few recessive diseases. In addition, some studies of cystic fibrosis carrier screening for a few common alleles have shown decreased prevalence of tested alleles with time, rather than reduced disease incidence (24, 25). These two lines of evidence suggested that very broad coverage of mutations offered the greatest likelihood of substantial reductions in disease incidence with time. Third, physician, patient, and societal adoption of screening was assumed to be optimal for the most severe and highly penetrant childhood diseases, before conception and where the anticipated clinical validity and clinical utility of testing was clear (26). Therefore, diseases were chosen that would almost certainly change family planning by prospective parents or affect antenatal, perinatal, or neonatal care. Milder recessive disorders, such as deafness, and adult-onset diseases, such as inherited cancer syndromes, were omitted, as were conditions lacking strong evidence for causal mutations (26).

    Database and literature searches and expert reviews were performed on 1123 diseases with recessive inheritance of known molecular basis (8, 27, 28). In general, diseases were selected to meet ACMG guidelines for genetic testing for rare, highly penetrant disorders (26). Assessment of the clinical validity and utility of testing was primarily based on literature review and was challenging for some disorders because of the paucity of data. Several subordinate requirements were gathered: In view of pleiotropy and variable severity, disease genes were included if mutations caused severe illness in a proportion of affected children. All but six diseases that featured genocopies (including variable inheritance and mitochondrial mutations) were included. Diseases were not excluded on the basis of low incidence. Diseases for which large population carrier screens exist were included, such as TSD, hemoglobinopathies, and cystic fibrosis. Mental retardation genes were not included in this iteration. Four hundred and forty-eight X-linked recessive and autosomal recessive diseases, encompassing 437 genes, met these criteria (table S1). The disease type was cardiac for 8, cutaneous for 45, developmental for 46, endocrine for 15, gastroenterological for 3, hematological for 15, hepatic for 3, immunological for 29, metabolic for 142, neurological for 122, ocular for 12, renal for 25, respiratory for 8, and skeletal for 28. Note that these genes, although a good representative set, require further assessment of clinical readiness before translation into clinical testing.

    Technology selection

    Array hybridization with allele-specific primer extension was initially favored for expanded carrier detection because of test simplicity, cost, scalability, and accuracy, as has recently been described (29). To be well suited for array-based screening, however, most carriers must be accounted for by a few mutations, and most disease mutations must be nucleotide substitutions (8, 27, 28). Of 215 autosomal recessive disorders examined, only 87 were assessed to meet these criteria. Most recessive disorders for which a large proportion of burden was attributable to a few disease mutations were limited to specific ethnic groups. Indeed, 286 severe childhood autosomal recessive diseases encompassed 19,640 known disease mutations (8, 27, 28). Given that the Human Gene Mutation Database (HGMD) lists 102,433 disease mutations (27), a number that is steadily increasing, a fixed-content method appeared impractical. Other concerns with array-based screening for recessive disorders were type 1 errors in the absence of confirmatory testing and type 2 errors for disease mutations other than substitutions (complex rearrangements, indels, or gross deletions with uncertain boundaries). A serendipitous discovery (discussed below) that supported this decision was an unexpectedly high number of characterized mutations that are misannotated.

    The effectiveness and remarkable decline in cost of exome capture and NGS for variant detection in genomes and exomes suggested an alternative potential paradigm for comprehensive carrier testing. Four target enrichment and three NGS methods were preliminarily evaluated for multiplexed carrier testing. Preliminary experiments suggested that existing protocols for Agilent SureSelect hybrid capture (15) and RainDance microdroplet polymerase chain reaction (PCR) (16) but not Febit HybSelect microarray-based biochip capture (30) or Olink padlock probe ligation and PCR (31) yielded consistent target enrichment. Therefore, workflows and software pipelines were developed for comprehensive carrier testing by hybrid capture or microdroplet PCR, followed by NGS (Fig. 1). Baits or primers were designed to capture or amplify 1,978,041 nucleotides (nt), corresponding to 7717 segments of 437 recessive disease genes by hybrid capture and microdroplet PCR, respectively. Targeted were all coding exons and splice site junctions, and intronic, regulatory, and untranslated regions known to contain disease mutations (table S2). In general, baits for hybrid capture or PCR primers were designed to encompass or flank disease mutations, respectively. Primers were also designed to avoid known polymorphisms and to minimize nontarget nucleotides. To capture or amplify both the normal and the disease mutation alleles, they also designed custom baits or primers for 11 gross deletion disease mutations for which boundaries had been defined (table S3). A total of 29,891 120-mer RNA baits were designed to capture 98.7% of targets. Fifty-five percent of 101 exons that failed bait design contained repeat sequences (table S4). Primer pairs (10,280) were designed to amplify 99% of targets (table S5). Twenty exons failed primer design by falling outside the amplicon size range of 200 to 600 nt.

    Fig. 1

    Workflow of the comprehensive carrier screening test. Workflow shows receiving samples and DNA extraction, target enrichment from DNA samples, multiplexed sequencing library preparation, NGS, and bioinformatic analysis. (The bioinformatic decision tree is shown in fig. S4.)

    Analytic metrics

    An ideal target enrichment protocol would inexpensively result in at least 30% of nucleotides being on target, which corresponded to ~500-fold enrichment with ~2-million-nucleotide target size. This was achieved with hybrid capture after one round of bait redesign for underrepresented exons and decreased bait representation in overrepresented exons (Table 1). An ideal target enrichment protocol would also give a narrow distribution of target coverage and without tails or skewness (indicative of minimal enrichment-associated bias). After hybrid capture, the sequencing library size distribution was narrow (Fig. 2A). The aligned sequence coverage distribution was unimodal but flat (platykurtic) and right-skewed (Fig. 2B). This implied that hybrid capture would require oversequencing of most targets to recruit a minority of poorly selected targets to adequate coverage. As expected, median coverage increased linearly with sequence depth. The proportion of bases with greater than zero and >20× coverage increased toward asymptotes at ~99 and ~96%, respectively (Table 1 and Fig. 2C). Targets with low (<3×) coverage were highly reproducible and had high GC content (table S6). This suggested that targets failing hybrid capture could be predicted and, perhaps, rescued by individual PCRs.

    Table 1

    Sequencing, alignment, and coverage statistics for target enrichment and sequencing platforms.

    Fig. 2

    Analytic metrics of multiplexed carrier testing by NGS. (A) Chromatograms of size distributions of sequencing libraries after target enrichment. Top: Target enrichment by hybrid capture. Bottom: Target enrichment by microdroplet PCR. Size markers are shown at 40 and 8000 nt. FU, fluorescence units. (B) Frequency distribution of target coverage after hybrid selection and 1.75 Gb of singleton 50-mer Illumina GAIIx SBS of sample NA13675. Aligned sequences had a quality score of >25. (C) Target coverage as a function of depth of sequencing across 104 samples and six experiments. (D) Frequency distribution of target coverage after microdroplet PCR and 1.49 Gb of singleton 50-mer SBS of sample NA20379. Aligned sequences had a quality score of >25.

    Given the need for highly accurate carrier detection, they required >10 uniquely aligned reads of quality score >20 and >14% of reads to call a variant (20, 21). The requirement for >10 reads was highly effective for nucleotides with moderate coverage. For heterozygote detection, for example, this was equivalent to ~20× coverage, which was achieved in ~96% of exons with ~2.6 gigabases (Gb) of sequence (Fig. 2C). The proportion of targets with at least 20× coverage appeared to be useful for quality assessment. The requirement for ≥14% of reads to call a variant was highly effective for nucleotides with very high coverage and was derived from the genotype data discussed below. A quality score requirement was important when NGS started, but is now largely redundant.

    In theory, microdroplet PCR should result in all cognate amplicons being on target and should induce minimal bias. In practice, the coverage distribution was narrower than hybrid capture but with similar right skewing (Fig. 2D). However, these results were complicated by ~11% recurrent primer synthesis failures. This resulted in linear amplification of a subset of targets, ~5% of target nucleotides with zero coverage and a similar proportion of nucleotides on target to that obtained in the best hybrid capture experiments (~30%; Table 1). Hybrid capture was used for subsequent studies for reasons of cost.

    Multiplexing of samples during hybrid selection and NGS had not previously been reported. Six- and 12-fold multiplexing was achieved by adding molecular bar codes to adaptor sequences. Interference of bar code nucleotides with hybrid selection did not occur appreciably: The stoichiometry of multiplexed pools was essentially unchanged before and after hybrid selection. Multiplexed hybrid selection was found to be ~10% less effective than singleton selection, as assessed by median fold enrichment. Less than 1% of sequences were discarded at alignment because of bar code sequence ambiguity. Therefore, up to 12-fold multiplexing at hybrid selection and per sequencing lane (equivalent to 96-plex per sequencing flow cell) was used in subsequent studies to achieve the targeted cost of <$1 per test per sample.

    Several NGS technologies are currently available. Of these, the Illumina sequencing-by-synthesis (SBS) and SOLiD sequencing-by-ligation (SBL) platforms are widely disseminated and have throughput of at least 50 Gb per run and read lengths of at least 50 nt. Therefore, the quality and quantity of sequences from multiplexed, target-enriched libraries were compared with SBS (GAIIx singleton 50-mer) and SBL (SOLiD3 singleton 50-mer; Table 1). SBS- and SBL-derived 50-mer sequences (and alignment algorithms) gave similar alignment metrics (Table 1). When compared with Infinium array results, specificity of SNP genotypes by SBS and SBL was very similar (SBS, 99.69%; SBL, 99.66%), reflecting both target enrichment and multiplexed sequencing (Fig. 3).

    Fig. 3

    Venn diagrams of specificity of on-target SNP calls and genotypes in six samples. Target nucleotides were enriched by hybrid selection and sequenced by Illumina GAIIx SBS and SOLiD3 SBL at sixfold multiplexing. The samples were also genotyped with Infinium Omni1-Quad SNP arrays. (A) Comparison of SNP calls and genotypes obtained by SBS, SBL, and arrays at nucleotides surveyed by all three methods. SNPs were called if present in >10 uniquely aligning SBS reads, >14% of reads, and with average quality score of >20. Heterozygotes were identified if present in 14 to 86% of reads. Numbers refer to SNP calls. Numbers in brackets refer to SNP genotypes. (B) Comparison of SNP calls and genotypes obtained by SBS, SBL, and arrays. SNPs were called if present in more than four uniquely aligning SBS reads, >14% of reads, and with average quality score of >20. Heterozygotes were identified if present in 14 to 86% of reads.

    Given approximate parity of throughput and accuracy, consideration was given to optimal read length. Unambiguous alignment of short-read sequences is typically confounded by repetitive sequences, but was not relevant for carrier testing, because targets overwhelmingly contained unique sequences. The number of mismatches tolerated for unique alignment of short-read sequences is highly constrained but increases with read length. The vast majority of disease mutations are single-nucleotide substitutions or small indels. However, comprehensive carrier testing also requires detection of polynucleotide indels, gross insertions, gross deletions, and complex rearrangements. A combination of bioinformatic approaches was used to overcome short-read alignment shortcomings (Fig. 4). First, with the Illumina HiSeq SBS platform, they used the novel approach of read pair assembly before alignment (99% efficiency) to generate longer reads with high-quality scores (148.6 ± 3.8 nt combined read length and increase in nucleotides with quality score >30 from 75 to 83%). This was combined with generation of 150-nt sequencing libraries without gel purification by optimization of DNA shearing procedures and use of silica membrane columns. Omission of gel purification was critical for scalability of library generation. Second, they reduced the penalty on polynucleotide variants, rewarding identities (+1) and penalizing mismatches (−1) and indels [−1−log(indel − length)]. Third, gross deletions were detected both by perfect alignment to mutant junction reference sequences and by local decreases in normalized coverage (normalized to total sequence generated; C. H. Hu, personal communication). Previous studies have identified CNVs on the basis of changes in regional coverage along a chromosome in an individual sample (20, 21). However, concomitant analysis of normalized coverage in batches of samples appears to circumvent the need for adjustment for GC content (32), allowing more accurate detection of segmental losses. This was illustrated by identification of eight known gross deletion disease mutations (Fig. 5). Furthermore, seeking perfect alignment to mutant junction reference sequences obviates low alignment scores when short reads containing polynucleotide variants are mapped to a normal reference. This was illustrated by identification of 11 gross deletion mutations for which boundaries had been defined (table S3). It is anticipated that these approaches could be extended to gross insertions and complex rearrangements but will require additional analytical validation.

    Fig. 4

    Decision tree to classify sequence variation and evaluate carrier status. After reads were aligned to references, substitution, insertion, and deletion events and their associated quality metrics were recorded. Variants were classified as heterozygous or homozygous and annotated by comparison with mutation databases. Variants not in the mutation databases were evaluated for putative functional consequence and were retained as disease mutations if predicted to result in protein truncation. Variants with a frequency of <5% among all samples and that were known to cause a disease phenotype or loss of protein function and that were only found as homozygous in affected individuals were retained and reported.

    Fig. 5

    Detection of gross deletion mutations by local reduction in normalized aligned reads. (A) Deletion of CLN3 introns 6 to 8, 966bpdel, exons7-8del and fs, chr16:28405752_28404787del in four known compound heterozygotes (NA20381, NA20382, NA20383, and NA20384; red diamonds) and one undescribed carrier (NA00006; green diamond) among 72 samples sequenced. (B) Heterozygous deletion in HBA1 (chr16:141620_172294del, 30,676-bp deletion from 5′ of ζ2 to 3′ of θ1 in ALU regions) in one known (NA10798; red diamond; normalized coverage, 26; mean normalized coverage, 61.9 ± 15.2) and two undescribed carriers [NA19193 (normalized coverage, 28) and NA01982 (normalized coverage, 31); green diamonds] among 72 samples. Heterozygous deletion in NA10798 was confirmed by array hybridization. (C) Known homozygous deletion of exons 7 and 8 of SMN1 in one of eight samples (NA03813; red diamond). (D) Detection of a gross deletion that is a cause of Duchenne muscular dystrophy (OMIM #310200, DMD exons 51 to 55 del, chrX:31702000_31555711del) by reduction in normalized aligned reads at chrX:31586112. Among 72 samples, one (NA04364; red diamond) was from an affected male, and another (NA18540, a female JPT/HAN HapMap sample) was determined to carry a deletion that extends to at least chrX:31860199 [see (E)]. (E) An undescribed heterozygous deletion of DMD 3′ exon 44–3′ exon 50 (chrX:32144956-31702228del) in NA18540 (green diamond), a JPT/HAN HapMap sample. This deletion extends from at least chrX:31586112 to chrX:31860199 [see (D)]. Sample NA05022 (red diamond) is the uncharacterized mother of an affected son with 3′ exon 44–3′ exon 50 del, chrX:32144956-31702228del. Given the absence of the mutation in the mother, it likely occurred de novo in the son, as observed in one-third of DMD patients (62). (F) Hemizygous deletion in PLP1 exons3_4, c.del349_495del, chrX:102928207_102929424del in one (NA13434; red diamond) of eight samples. (G) Absence of gross deletion CG984340 (ERCC6 exon 9, c.1993_2169del, 665_723del, exon 9 del, chr10:50360915_50360739del) in 72 DNA samples. The sample in red (NA01712) was incorrectly annotated to be a compound heterozygote with CG984340 on the basis of cDNA sequencing.

    Clinical metrics

    On the basis of these strategies and their previous experience of genotyping variants identified in next-generation genome and chromosome sequences (20, 21, 33, 34), a bioinformatic decision tree for genotyping disease mutations was developed (Fig. 4). Clinical utility of target enrichment, SBS sequencing, and this decision tree for genotyping disease mutations was assessed. SNPs in 26 samples were genotyped by both high-density arrays and sequencing. The distribution of read count–based allele frequencies of 92,106 SNP calls was trimodal, with peaks corresponding to homozygous reference alleles, heterozygotes, and homozygous variant alleles, as ascertained by array hybridization (Fig. 6B). Optimal genotyping cutoffs were 14 and 86% (Fig. 6B). With these cutoffs and a requirement for 20× coverage and 10 reads of quality ≥20 to call a variant, the accuracy of sequence-based SNP genotyping was 98.8%, sensitivity was 94.9%, and specificity was 99.99%. The positive predictive value (PPV) of sequence-based SNP genotypes was 99.96% and negative predictive value (NPV) was 98.5%, as ascertained by array hybridization. As sequence depth increased from 0.7 to 2.7 Gb, sensitivity increased from 93.9 to 95.6%, whereas PPV remained ~100% (Fig. 6A). Areas under the curve (AUCs) of the receiver operating characteristic (ROC) for SNP calls by hybrid capture and SBS were calculated. When genotypes in 26 samples were compared with genome-wide SNP array hybridization, the AUC was 0.97 when either the number or the percent reads calling a SNP were varied (Fig. 6, C and D). When the parameters were combined, the AUC was 0.99. For known substitution, indel, splicing, gross deletion, and regulatory alleles in 76 samples, sensitivity was 100% (113 of 113 known alleles; table S7). The higher sensitivity for detection of known mutations reflected manual curation. The 20 known indels were confirmed by PCR and Sanger sequencing. Notably, substitutions, indels, splicing mutations, and gross deletions account for the vast majority (96%) of annotated mutations (27).

    Fig. 6

    Clinical metrics of multiplexed carrier testing by NGS. (A) Comparison of 92,128 SNP genotypes by array hybridization with those obtained by target enrichment, SBS, and a bioinformatic decision tree in 26 samples. SNPs were called if present in >10 uniquely aligning reads, >14% of reads, and average quality score of >20. Heterozygotes were identified if present in 14 to 86% of reads. TP = SNP called and genotyped correctly. TN = reference genotype called correctly. FN = SNP genotype undercall. FP = SNP genotype overcall. Accuracy = (TP + TN)/(TP + FN + TN + FP). Sensitivity = TP/(TP + FN). Specificity = TN/(TN + FP). Positive predictive value (PPV) = TP/(TP + FP). Negative predictive value (NPV) = TN/(TN + FN). (B) Distribution of allele frequencies of SNP calls by hybrid capture and SBS in 26 samples. Light blue, heterozygotes by array hybridization. (C) Receiver operating characteristic (ROC) curve of sensitivity and specificity of SNP genotypes by hybrid capture and SBS in 26 samples (when compared with array-based genotypes). Genomic regions with less than 20× coverage were excluded. Upon varying the number of reads calling the SNP, the area under the curve (AUC) was 0.97. (D) ROC curve of SNP genotypes by hybrid capture and SBS in 26 samples. Genomic regions with less than 20× coverage were excluded. Upon varying the percent reads calling the SNP, AUC was 0.97.

    Unexpectedly, 14 of 113 literature-annotated disease mutations were either incorrect or incomplete (table S7) (35–,39). PCR and Sanger sequencing confirmed that the 14 variants and genotypes called by NGS were correct. For example, sample NA07092, from a male with X-linked recessive Lesch-Nyhan syndrome (OMIM #300322), was characterized as a deletion of HPRT1 exon 8 by complementary DNA (cDNA) sequencing (40), but had an explanatory splicing mutation (intron 8, IVS8+1_4delGTAA, chrX:133460381_133460384delGTAA; Fig. 7A). NA09545, from a male with XLR Pelizaeus-Merzbacher disease (PMD; OMIM #312080), characterized as a substitution disease mutation [PLP1 exon 5, c.767C>T, P215S (41)], was found to also feature PLP1 gene duplication [which is reported in 62% of sporadic PMD (42); Fig. 7B]. NA02057, from a female with aspartylglucosaminuria (OMIM #208400), characterized as a compound heterozygote, was homozygous for two adjacent substitutions (AGA exon 4, c.482G>A, R161Q, chr4:178596918G>A and exon 4, c.488G>C, C163S, chr4:178596912G>C in 38 of 39 reads; Fig. 8), of which C163S had been shown to be the disease mutation (43). Although one allele of NA01712, a CHT with Cockayne syndrome type B (OMIM #133540), had been characterized by cDNA analysis as a deletion of ERCC6 exon 9 [c.1993_2169del, p.665_723del, exon 9 del, chr10:50360915_50360739del (44)], no decrease in normalized exon 9 read number was observed despite more than 300× coverage (Fig. 5G). Instead, however, 64 of 138 NA01712 reads contained a nucleotide substitution that created a premature stop codon (Q664X, chr10:50360741C>T). Both ERCC4 mutations described in CHT NA03542 were absent in at least 130 aligning reads (44). However, the current study used DNA from Epstein-Barr virus (EBV)–transformed cell lines in which somatic hypermutation has been noted (45). In particular, ERCC4, a DNA repair gene, is a likely candidate for somatic mutation. Including these results, the specificity of sequence-based genotyping of substitution, indel, gross deletion, and splicing disease mutations was 100% (97 of 97).

    Fig. 7

    Disease mutations and estimated carrier burden in 104 DNA samples. (A) Sample NA07092, from an affected male with X-linked recessive Lesch-Nyhan syndrome (OMIM #300322), had been characterized as a deletion of HPRT1 exon 8 by cDNA sequencing (19), but has an explanatory splicing mutation (intron 8, IVS8+1_4delGTAA, chrX:133460381_133460384delGTAA). (B) Sample NA09545, from an affected male with X-linked recessive Pelizaeus-Merzbacher disease (PMD; OMIM #312080), characterized as a substitution disease mutation [PLP1 exon 5, c.767C>T, P215S (20)], also featured PLP1 gene duplication [which is reported in 62% of sporadic PMD (21)]. (C) Distribution of carrier burden of severe pediatric diseases among 104 DNA samples. (D) Ward hierarchical clustering of 227 severe pediatric disease mutations in 104 DNA samples.

    Fig. 8

    Five reads from NA202057 showing AGA exon 4, c.488G>C, C163S, chr4:178596912G>C and exon 4, c.482G>A, R161Q, chr4:178596918G>A (black arrows). One hundred and ninety-three of 400 reads contained these substitution disease mutations (CM910010 and CM910011). The top lines of doublets are Illumina GAIIx 50-nt reads. The bottom lines are NCBI reference genome, build 36.3. Colors represent quality (Q) scores of each nucleotide: red, >30; orange, 20 to 29; green, 10 to 19. Reads aligned uniquely to these coordinates.

    Carrier burden

    The average carrier burden of severe recessive disease mutations for severe childhood recessive diseases was assessed in 104 DNA samples. All variants meeting the filtering criteria described above and flagged as disease mutations in HGMD were enumerated. Seventy-four percent of these, however, were accounted for by 47 substitutions each with an incidence of ≥5%, of which 20 were homozygous in samples unaffected by the corresponding disease (table S8). These were omitted. Literature support for pathogenicity was evaluated for the remaining variants flagged as disease mutations in HGMD. Variants were retained as disease mutations if they had been shown to result in loss of activity in a functional assay, were the only variants detected in affected individuals and absent in controls, and/or were predicted to result in a premature stop codon or loss of a substantial portion of the protein (Fig. 4). In total, 27% (122 of 460) of literature-cited disease mutations were omitted, because they were adjudged to be common polymorphisms or sequencing errors or because of a lack of evidence of pathogenicity. New, putatively deleterious variants (variants in severe pediatric disease genes that create premature stop codons or coding domain frameshifts) were quantified: 26 heterozygous or hemizygous new nonsense variants were identified in 104 samples (table S9). Including the latter, 336 variants were retained as likely disease mutations.

    The average carrier burden of severe recessive substitutions, indels, and gross deletion disease mutations, after exclusion of one allele in compound heterozygotes, was 2.8 per genome (291 in 104 samples). The carrier burden frequency distribution was unimodal with slight right skewing (Fig. 7C). The range in carrier burden was surprisingly narrow (zero to seven per genome, with a mode of two; Fig. 7C).

    As exemplified by cystic fibrosis, the carrier incidence and mutation spectrum of individual recessive disorders vary widely among populations (46). However, whereas group sizes were small, no significant differences in total carrier burden were found between Caucasians and other ethnicities, between males and females, nor between affected and unaffected individuals (after correction for compound heterozygosity in those affected). Hierarchical clustering of samples and disease mutations revealed an apparently random topology, suggesting that targeted population testing is likely to be ineffective (Fig. 7D). Adequacy of hierarchical clustering was attested to by samples from identical twins being nearest neighbors, as were two disease mutations in linkage disequilibrium.

    Discussion

    We have described a screening test for carriers of 448 severe childhood recessive illnesses consisting of target enrichment, NGS, and bioinformatic analyses, which worked well in a research setting. Specificity was 99.96%, and a sensitivity of ~95% was attained with hybrid capture at a sequence depth of 2.5 Gb per sample. Because enrichment failures with hybrid capture were reproducible, they may be amenable to rescue by individual PCR or probe redesign. Alternatively, microdroplet PCR should theoretically achieve a sensitivity of ~99%, albeit at higher cost (16, 47). The test was scalable, modular, and amenable to automation, with batches of 192 samples and a turnaround of 2 weeks. The time to first result could be reduced substantially with microdroplet PCR and third-generation sequencing. At high volume, the overall analytical cost of the hybrid enrichment-based test was $378, achieving the requirement of $1 per test per condition and approximating that expended on treatment of severe recessive childhood disorders per U.S. live birth (14, 29). Although the analytical cost will decrease as the throughput of NGS improves, test interpretation, reporting, genetic counseling, and stewardship of mutation databases will confer considerable additional costs.

    Having established technical feasibility in a research setting, the next phases of carrier test development will be refinement of the list of diseases, automation, software implementation, report development, and, most important, validation in a realistic testing situation featuring investigator blinding and less manual review. For example, genes associated with severe cognitive developmental disorders may merit inclusion. Although technical standards and guidelines have been established for laboratory-developed genetic testing for rare disorders in accredited laboratories (26), there are several challenges in their adoption for NGS and bioinformatic-based testing of ~500 conditions. For example, specific national standards for quality assurance, quality control, test accessioning and reporting, and proficiency evaluation do not currently exist. Addressing crucial issues such as specificity and false positives is complex when hundreds of genes are being sequenced simultaneously. For certain diseases, such as cystic fibrosis, reference sample panels and metrics have been established. For diseases without such materials, it is prudent to test as many samples containing known mutations as possible. In setting up and validating the screen, it would also be necessary to test examples of all classes of mutations and situations that are anticipated to be potentially problematic, such as mutations within high GC content regions, simple sequence repeats, and repetitive elements.

    The ethical, legal, and social implications of comprehensive carrier testing warrant much discussion. These issues, in turn, are influenced by the scope and setting in which testing is proposed. The ideal age for recessive disease screening is in early adulthood and before pregnancy (48, 49). One possibility would be voluntary community-based population testing. This would have an advantage over testing in a hospital setting, where information about carrier testing often is communicated during pregnancy or after the birth of an affected child (50). Community-based carrier testing has had high uptake, without apparent stigma or discrimination and with substantial reductions in the frequencies of tested disorders (3, 48, 49, 51–54). After stakeholder discussions, the cost-effectiveness and clinical utility of offering community-based carrier testing would require detailed assessment. Examination of the results of existing population-based carrier screening programs for TSD and cystic fibrosis could provide templates for such analyses.

    Rapid adoption of comprehensive carrier testing is likely by in vitro fertilization clinics, where screening of sperm and oocyte donors has high clinical utility, lower counseling burden, and small incremental cost (55). Early adoption is also likely in medical genetics clinics, where counseling resources already exist, to screen individuals with a family history of inherited disease. Although the data reported herein are preliminary, the apparent random distribution of mutations in individuals argues against screening different populations for different diseases. The most significant hurdles to implementing comprehensive carrier screening will be facile interpretation of results, reporting in a manner comprehensible by physicians and patients, education of the public of the benefits and limitations of screening, and provision of genetic counselors.

    Currently, a two-stage approach is used for preconception carrier screening of couples, with confirmatory testing of all positive results. However, this has been in a setting of testing individual genes for specific mutations where positive results are rare. The requirement for at least 10 high-quality reads to substantiate a variant call resulted in a specificity of 99.96% for single-nucleotide substitutions (which is the limit of accuracy for the gold standard method used) and 100% for about 200 known mutations and new indels in their screening method. It appeared, therefore, that confirmatory testing of all single-nucleotide substitutions and indels was unnecessary. Obviously, inclusion of controls in each test run and random sample retesting will be required. Experience with polynucleotide indels, copy number variants, gross insertions and deletions, and complex rearrangements is as yet insufficient to draw firm conclusions. However, detection of perfect alignments to mutant reference sequences appeared to be robust for identification of gross insertions and deletions. They noted, however, that identification of larger polynucleotide indels was influenced in some sequences by the particular alignment seed, suggesting that additional refinement of alignment parameters is needed.

    We found an unexpectedly high proportion of literature-annotated disease mutations that were incorrect, incomplete, or common polymorphisms. Differentiation of common polymorphisms from disease mutations requires genotyping a large number of unaffected individuals. Severe, orphan disease mutations should be uncommon (<1% incidence) and should not be found in the homozygous state in unaffected individuals. Unexpectedly, they found that 74% of “disease mutation” calls were accounted for by substitutions with incidences of ≥5%, of which almost one-half were homozygous in samples unaffected by the corresponding disease. Also unexpected was the finding that 14 of 113 literature-annotated disease mutations were incorrect. Thus, for many recessive diseases, HGMD, dbSNP, OMIM, and the literature are insufficient arbiters of whether variants are disease mutations. They have shown NGS of samples from affected individuals to be a powerful method for error correction: More than three-quarters of errors in mutation identification were Sanger sequencing interpretation errors or incorrect imputation of genomic mutations from cDNA sequencing. Key advantages of NGS are clonal derivation (facilitating unambiguous detection of heterozygous and indel variants), maintenance of phase information (allowing haplotype derivation for adjacent variants), and highly redundant coverage (resulting in extremely low consensus error rates). Thus, although they have shown that it is technically feasible to undertake comprehensive analysis of recessive gene sequences, sequencing of many unaffected and affected samples will be required to establish an authoritative disease mutation database. Specifically, current reference resources contain common polymorphisms that are annotated as disease mutations and erroneous disease mutations. Without reference database improvements, the clinical utility of comprehensive carrier testing will be limited. Aside from nonsense mutations and premature stop codons in known disease genes and the study of affected individuals, additional bioinformatic approaches will be needed to distinguish rare benign variants from pathogenic variants: Amino acid substitution characteristics such as physicochemical and evolutionary conservation and location (where tertiary structure is known) are useful but not definitive. For many rare variants, functional assays will need to be developed to assess pathogenicity rigorously. Establishment of an authoritative database of disease mutations is clearly needed and represents a nascent bottleneck in progress toward prevention, diagnosis, and treatment of recessive diseases. In the interim, clinical interpretation of the functional importance or pathogenicity of variants will be challenging for many recessive diseases.

    A first estimate of the average carrier burden of disease mutations (substitutions, indels, and gross deletions) causing severe childhood recessive diseases was determined: In 104 unrelated individuals, it was 2.8 per genome. Several qualifications of this burden estimate should be noted. First, as discussed, an adequate compilation of pathogenic mutations does not currently exist, and strong evidence of pathogenicity was absent for some of the variants referred to as disease mutations. Second, the burden estimate excluded new, rare, missense variants of unknown significance (VUSs), some of which are likely to be pathogenic. The burden of nonconservative, nonsynonymous, uncommon (<5% incidence) VUS was ~11 per sample. Additional strategies are needed to triage these variants. Third, many individuals in their cohort were affected by one of these diseases. Although a correction was made for compound heterozygote and homozygote alleles, the burden estimate did not correct for other potential selection biases. Fourth, they did not assess gross deletions or other copy number variants beyond limited CNV array hybridization and examination of coverage changes in a small number of known deletions. Nevertheless, a burden of 2.8 per genome agreed with theoretical estimates of reproductive lethal allele burden (56). It also concurred with severe childhood recessive carrier burdens that they obtained by analyzing published individual genomes [2 substitution disease mutations in the Quake genome and a monozygotic twin pair (21, 57), 5 each in the YH and Watson genomes (58, 59), 4 in the NA07022 genome (60, 61), and 10 in the AK1 genome (20)]. The range in carrier burden was surprisingly narrow (zero to seven per genome). Given the large variations in SNP burden and incidence of individual disease alleles among populations, it will be of great interest to evaluate variation in the burden of severe recessive disease mutations among human populations and how this has been influenced by population bottlenecks.

    Finally, the technology platform described herein is agnostic with regard to target genes or clinical setting. A variety of medical applications for this technology exist beyond use in preconception carrier screening. For example, comprehensive newborn screening for treatable or preventable Mendelian diseases would allow early diagnosis and institution of treatment while neonates are asymptomatic. Early treatment can have a profound impact on the clinical severity of conditions and could provide a framework for centralized assessment of investigational new treatments before organ failure. In some cases, such as Duarte variant galactosemia, molecular testing would be superior to conventional biochemical testing. Organ or symptom menu-based diagnostic testing, with masking of nonselected conditions, is anticipated to assist clinical geneticists and pediatric neurologists, because current practice often involves costly, sequential testing of numerous candidate genes. Given impending identification of new disease genes by exome and genome resequencing, the number of disease genes is likely to increase substantially over the next several years, requiring incremental expansion of the target gene sets.

    In summary, a technology platform for comprehensive preconception carrier screening for 448 recessive childhood diseases is described. Combining this technology with genetic counseling could reduce the incidence of severe recessive pediatric diseases and may help to expedite diagnosis of these disorders in newborns.

    Materials and Methods Disease selection

    Criteria for disease inclusion for preconception screening were broadly based on those for expansion of newborn screening, but with omission of treatment criteria (14). Thus, very broad coverage of severe childhood diseases and mutations was sought to maximize cost-benefit, potential reduction in disease incidence, and adoption. A Perl parser identified severe childhood recessive disorders with known molecular basis in OMIM (8). Database and literature searches and expert reviews were performed on resultant diseases (8, 27, 28). Six diseases with extreme locus heterogeneity were omitted (OMIM #209900, #209950, Fanconi anemia, #256000, #266510, #214100). Diseases were included if mutations caused severe illness in a proportion of affected children and despite variable inheritance, mitochondrial mutations, or low incidence. Mental retardation and mitochondrial genes were excluded. Four hundred and thirty-seven genes, representing 507 recessive diseases, met these criteria, of which 448 diseases were severe (table S3).

    DNA samples

    Target enrichment was performed with 104 DNA samples obtained from the Coriell Institute (Camden, NJ) (table S7). Seventy-six of these were known to be carriers or affected by 37 severe, childhood recessive disorders. The latter samples contained 120 known disease mutations in 34 genes (63 substitutions, 20 indels, 13 gross deletions, 19 splicing, 2 regulatory, and 3 complex disease mutations). They also represented homozygous, heterozygous, compound heterozygous, and hemizygous disease mutation states. Twenty-six samples were well characterized, from “normal” individuals, and two had previously undergone genome sequencing (21).

    Target enrichment and SBS

    For Illumina GAIIx SBS, 3 μg of DNA was sonicated by Covaris S2 to ~250 nt with 20% duty cycle, 5 intensity, and 200 cycles per burst for 180 s. For Illumina HiSeq SBS, shearing to ~150 nt was by 10% duty cycle, 5 intensity, and 200 cycles per burst for 660 s. Bar-coded sequencing libraries were made per the manufacturer’s protocols. After adaptor ligation, Illumina libraries were prepared with AMPure bead (Beckman Coulter) rather than with gel purification. Library quality was assessed by optical density and electrophoresis (Agilent 2100).

    SureSelect enrichment of 6-, 8-, or 12-plex pooled libraries was per Agilent protocols (15), with 100 ng of custom bait library, blocking oligonucleotides specific for paired-end sequencing libraries and 60-hour hybridization. Biotinylated RNA library hybrids were recovered with streptavidin beads. Enrichment was assessed by quantitative PCR (Life Technologies; CLN3, exon 15, Hs00041388_cn; HPRT1, exon 9, Hs02699975_cn; LYST, exon 5, Hs02929596_cn; PLP1, exon 4, Hs01638246_cn) and a nontargeted locus (chrX: 77082157, Hs05637993_cn) before and after enrichment.

    RainDance RDT1000 target enrichment was as described and used a custom primer library (16, 46): Genomic DNA samples were fragmented by nebulization to 2 to 4 kb and 1 μg mixed with all PCR reagents but primers. Microdroplets containing three primer pairs were fused with PCR reagent droplets and amplified. After emulsion breaking and purification by MinElute column (Qiagen), amplicons were concatenated overnight at 16°C and sequencing libraries were prepared. Sequencing was performed on Illumina GAIIx and HiSeq2000 instruments per the manufacturer’s protocols, as described (20, 21).

    Hybrid capture and SBL

    DNA (3 μg) was sheared by Covaris to ~150 nt with 10% duty cycle, 5 intensity, and 100 cycles per burst for 60 s. Bar-coded fragment sequencing libraries were made with Life Technologies protocols and reagents. Taqman quantitative PCR was used to assess each library, and an equimolar six-plex pool was produced for enrichment with Agilent SureSelect and a modified protocol. Before enrichment, the six-plex pool was single-stranded. Furthermore, 1.2 μg of pooled DNA with 5 μl (100 ng) of custom baits was used for enrichment, with blocking oligonucleotides specific for SOLiD sequencing libraries and 24-hour hybridization. This was the first targeted capture of a multiplex library for SOLiD sequencing, and this protocol has not been subsequently pursued. Alternative methods have been demonstrated to reduce the noise associated with bar coding and enrichment. Sequencing was performed on a SOLiD 3 instrument with one quadrant on a single sequencing slide, generating singleton 50-mer reads.

    Sequence analysis

    The bioinformatic decision tree for detecting and genotyping disease mutations was predicated on experience with detection and genotyping of variants in next-generation genome and chromosome sequences (20, 21, 33, 34) (Fig. 4). Briefly, SBS sequences were aligned to the National Center for Biotechnology Information (NCBI) reference human genome sequence (version 36.3) with GSNAP and scored by rewarding identities (+1) and penalizing mismatches (−1) and indels [−1−log(indel − length)]. Alignments were retained if covering >95% of the read and scoring >78% of maximum. Variants were detected with Alpheus with stringent filters (>14% and >10 reads calling variants and average quality score >20). Allele frequencies of 14 to 86% were designated heterozygous and >86% homozygous. Reference genotypes of SNPs and CNVs mapping within targets were obtained with Illumina Omni1-Quad arrays and GenomeStudio 2010.1. Indel genotypes were confirmed by genomic PCR of <600-bp flanking variants and Sanger sequencing.

    SBL sequence data analysis was performed with BioScope v1.2. Fifty nucleotide reads were aligned to NCBI genome build 36.3 with a seed and extend approach (max-mapping). A 25-nt seed with up to two mismatches is first aligned to the reference. Extension can proceed in both directions, depending on the footprint of the seed within the read. During extension, each base match receives a score of +1, whereas mismatches get a default score of −2. The alignment with the highest mapping quality value is chosen as the primary alignment. If two or more alignments have the same score, then one of them is randomly chosen as the primary alignment. SNPs were called with the BioScope diBayes algorithm at medium stringency setting (61). diBayes is a Bayesian algorithm that incorporates position and probe errors, as well as color quality value information for SNP calling. Reads with mapping quality of <8 were discarded by diBayes. A position must have at least 2× or 3× coverage to call a homozygous or heterozygous SNP, respectively. The BioScope small indel pipeline was used with default settings and calls insertions of size ≤3 nt and deletions of size ≤11 nt. In comparisons with SBS, SNP and indel calls were further restricted to positions where at least 4 or 10 reads called a variant.

    Indel confirmation

    PCR primers were designed to amplify 100 to 300 nt upstream and downstream of each variant or indel with PrimerQuest (Integrated DNA Technologies). Targeted regions were amplified from 100 ng of genomic DNA, and resultant PCR amplicons were analyzed for predicted size by LCGX (Caliper Life Sciences). Amplicons of appropriate size were Sanger-sequenced in both the forward and the reverse directions with the same primers used for PCR amplification. Analysis was performed with the Mutation Surveyor (SoftGenetics) software package.

    Supplementary Material

    www.sciencetranslationalmedicine.org/cgi/content/full/3/65/65ra4/DC1

    Fig. S1. One end of five reads from NA01712 showing ERCC6 exon 17, c.3536delA, Y1179fs, chr10:50348476delA.

    Fig. S2. One end of five reads from NA20383 showing CLN3 exon 11, c.1020G>T, E295X, chr16:28401322G>T (black arrow).

    Fig. S3. One end of five reads from NA16643 showing HBB exon 2, c.306G>C, E102D, chr11:5204392G>C (black arrow).

    Table S1. Four hundred and forty-eight severe pediatric recessive diseases, encompassing 437 genes, that met criteria for carrier screening.

    Table S2. Sequences and genome coordinates of 29,891 Agilent SureSelect 120-mer RNA baits for hybrid capture of 7616 (99.7%) of 7717 segments of 437 genes causing severe recessive pediatric disorders.

    Table S3. Custom Agilent SureSelect RNA baits for hybrid capture of 11 gross deletion DMs with defined boundaries.

    Table S4. Repeat content of 55 exons (5773 nt, 46.27%) failing RNA bait design due to repetitive sequences.

    Table S5. Sequences and genome coordinates of 10,280 primer pairs for microdroplet PCR (RainDance) of 7717 segments of 437 genes causing severe recessive pediatric disorders.

    Table S6. Coordinates, genes, and GC content of 40 exons with recurrent coverage <3×.

    Table S7. Confirmed and corrected disease mutations (DMs) in 104 DNA samples, together with enrichment technologies and sequencing platforms used to characterize them.

    Table S8. Variants reported in HGMD to be disease mutations that occurred with incidence >5% in 104 samples by target enrichment and second-generation sequencing or that were assessed to be homozygous in unaffected samples, indicative that they were polymorphisms.

    Table S9. Severe recessive pediatric disease-causing mutations (DMs) identified in 104 samples by target enrichment and second-generation sequencing.



    Direct Download of over 5500 Certification Exams

    3COM [8 Certification Exam(s) ]
    AccessData [1 Certification Exam(s) ]
    ACFE [1 Certification Exam(s) ]
    ACI [3 Certification Exam(s) ]
    Acme-Packet [1 Certification Exam(s) ]
    ACSM [4 Certification Exam(s) ]
    ACT [1 Certification Exam(s) ]
    Admission-Tests [13 Certification Exam(s) ]
    ADOBE [93 Certification Exam(s) ]
    AFP [1 Certification Exam(s) ]
    AICPA [2 Certification Exam(s) ]
    AIIM [1 Certification Exam(s) ]
    Alcatel-Lucent [13 Certification Exam(s) ]
    Alfresco [1 Certification Exam(s) ]
    Altiris [3 Certification Exam(s) ]
    Amazon [2 Certification Exam(s) ]
    American-College [2 Certification Exam(s) ]
    Android [4 Certification Exam(s) ]
    APA [1 Certification Exam(s) ]
    APC [2 Certification Exam(s) ]
    APICS [2 Certification Exam(s) ]
    Apple [69 Certification Exam(s) ]
    AppSense [1 Certification Exam(s) ]
    APTUSC [1 Certification Exam(s) ]
    Arizona-Education [1 Certification Exam(s) ]
    ARM [1 Certification Exam(s) ]
    Aruba [6 Certification Exam(s) ]
    ASIS [2 Certification Exam(s) ]
    ASQ [3 Certification Exam(s) ]
    ASTQB [8 Certification Exam(s) ]
    Autodesk [2 Certification Exam(s) ]
    Avaya [96 Certification Exam(s) ]
    AXELOS [1 Certification Exam(s) ]
    Axis [1 Certification Exam(s) ]
    Banking [1 Certification Exam(s) ]
    BEA [5 Certification Exam(s) ]
    BICSI [2 Certification Exam(s) ]
    BlackBerry [17 Certification Exam(s) ]
    BlueCoat [2 Certification Exam(s) ]
    Brocade [4 Certification Exam(s) ]
    Business-Objects [11 Certification Exam(s) ]
    Business-Tests [4 Certification Exam(s) ]
    CA-Technologies [21 Certification Exam(s) ]
    Certification-Board [10 Certification Exam(s) ]
    Certiport [3 Certification Exam(s) ]
    CheckPoint [41 Certification Exam(s) ]
    CIDQ [1 Certification Exam(s) ]
    CIPS [4 Certification Exam(s) ]
    Cisco [318 Certification Exam(s) ]
    Citrix [48 Certification Exam(s) ]
    CIW [18 Certification Exam(s) ]
    Cloudera [10 Certification Exam(s) ]
    Cognos [19 Certification Exam(s) ]
    College-Board [2 Certification Exam(s) ]
    CompTIA [76 Certification Exam(s) ]
    ComputerAssociates [6 Certification Exam(s) ]
    Consultant [2 Certification Exam(s) ]
    Counselor [4 Certification Exam(s) ]
    CPP-Institue [2 Certification Exam(s) ]
    CPP-Institute [1 Certification Exam(s) ]
    CSP [1 Certification Exam(s) ]
    CWNA [1 Certification Exam(s) ]
    CWNP [13 Certification Exam(s) ]
    Dassault [2 Certification Exam(s) ]
    DELL [9 Certification Exam(s) ]
    DMI [1 Certification Exam(s) ]
    DRI [1 Certification Exam(s) ]
    ECCouncil [21 Certification Exam(s) ]
    ECDL [1 Certification Exam(s) ]
    EMC [129 Certification Exam(s) ]
    Enterasys [13 Certification Exam(s) ]
    Ericsson [5 Certification Exam(s) ]
    ESPA [1 Certification Exam(s) ]
    Esri [2 Certification Exam(s) ]
    ExamExpress [15 Certification Exam(s) ]
    Exin [40 Certification Exam(s) ]
    ExtremeNetworks [3 Certification Exam(s) ]
    F5-Networks [20 Certification Exam(s) ]
    FCTC [2 Certification Exam(s) ]
    Filemaker [9 Certification Exam(s) ]
    Financial [36 Certification Exam(s) ]
    Food [4 Certification Exam(s) ]
    Fortinet [13 Certification Exam(s) ]
    Foundry [6 Certification Exam(s) ]
    FSMTB [1 Certification Exam(s) ]
    Fujitsu [2 Certification Exam(s) ]
    GAQM [9 Certification Exam(s) ]
    Genesys [4 Certification Exam(s) ]
    GIAC [15 Certification Exam(s) ]
    Google [4 Certification Exam(s) ]
    GuidanceSoftware [2 Certification Exam(s) ]
    H3C [1 Certification Exam(s) ]
    HDI [9 Certification Exam(s) ]
    Healthcare [3 Certification Exam(s) ]
    HIPAA [2 Certification Exam(s) ]
    Hitachi [30 Certification Exam(s) ]
    Hortonworks [4 Certification Exam(s) ]
    Hospitality [2 Certification Exam(s) ]
    HP [750 Certification Exam(s) ]
    HR [4 Certification Exam(s) ]
    HRCI [1 Certification Exam(s) ]
    Huawei [21 Certification Exam(s) ]
    Hyperion [10 Certification Exam(s) ]
    IAAP [1 Certification Exam(s) ]
    IAHCSMM [1 Certification Exam(s) ]
    IBM [1532 Certification Exam(s) ]
    IBQH [1 Certification Exam(s) ]
    ICAI [1 Certification Exam(s) ]
    ICDL [6 Certification Exam(s) ]
    IEEE [1 Certification Exam(s) ]
    IELTS [1 Certification Exam(s) ]
    IFPUG [1 Certification Exam(s) ]
    IIA [3 Certification Exam(s) ]
    IIBA [2 Certification Exam(s) ]
    IISFA [1 Certification Exam(s) ]
    Intel [2 Certification Exam(s) ]
    IQN [1 Certification Exam(s) ]
    IRS [1 Certification Exam(s) ]
    ISA [1 Certification Exam(s) ]
    ISACA [4 Certification Exam(s) ]
    ISC2 [6 Certification Exam(s) ]
    ISEB [24 Certification Exam(s) ]
    Isilon [4 Certification Exam(s) ]
    ISM [6 Certification Exam(s) ]
    iSQI [7 Certification Exam(s) ]
    ITEC [1 Certification Exam(s) ]
    Juniper [64 Certification Exam(s) ]
    LEED [1 Certification Exam(s) ]
    Legato [5 Certification Exam(s) ]
    Liferay [1 Certification Exam(s) ]
    Logical-Operations [1 Certification Exam(s) ]
    Lotus [66 Certification Exam(s) ]
    LPI [24 Certification Exam(s) ]
    LSI [3 Certification Exam(s) ]
    Magento [3 Certification Exam(s) ]
    Maintenance [2 Certification Exam(s) ]
    McAfee [8 Certification Exam(s) ]
    McData [3 Certification Exam(s) ]
    Medical [69 Certification Exam(s) ]
    Microsoft [374 Certification Exam(s) ]
    Mile2 [3 Certification Exam(s) ]
    Military [1 Certification Exam(s) ]
    Misc [1 Certification Exam(s) ]
    Motorola [7 Certification Exam(s) ]
    mySQL [4 Certification Exam(s) ]
    NBSTSA [1 Certification Exam(s) ]
    NCEES [2 Certification Exam(s) ]
    NCIDQ [1 Certification Exam(s) ]
    NCLEX [2 Certification Exam(s) ]
    Network-General [12 Certification Exam(s) ]
    NetworkAppliance [39 Certification Exam(s) ]
    NI [1 Certification Exam(s) ]
    NIELIT [1 Certification Exam(s) ]
    Nokia [6 Certification Exam(s) ]
    Nortel [130 Certification Exam(s) ]
    Novell [37 Certification Exam(s) ]
    OMG [10 Certification Exam(s) ]
    Oracle [279 Certification Exam(s) ]
    P&C [2 Certification Exam(s) ]
    Palo-Alto [4 Certification Exam(s) ]
    PARCC [1 Certification Exam(s) ]
    PayPal [1 Certification Exam(s) ]
    Pegasystems [12 Certification Exam(s) ]
    PEOPLECERT [4 Certification Exam(s) ]
    PMI [15 Certification Exam(s) ]
    Polycom [2 Certification Exam(s) ]
    PostgreSQL-CE [1 Certification Exam(s) ]
    Prince2 [6 Certification Exam(s) ]
    PRMIA [1 Certification Exam(s) ]
    PsychCorp [1 Certification Exam(s) ]
    PTCB [2 Certification Exam(s) ]
    QAI [1 Certification Exam(s) ]
    QlikView [1 Certification Exam(s) ]
    Quality-Assurance [7 Certification Exam(s) ]
    RACC [1 Certification Exam(s) ]
    Real-Estate [1 Certification Exam(s) ]
    RedHat [8 Certification Exam(s) ]
    RES [5 Certification Exam(s) ]
    Riverbed [8 Certification Exam(s) ]
    RSA [15 Certification Exam(s) ]
    Sair [8 Certification Exam(s) ]
    Salesforce [5 Certification Exam(s) ]
    SANS [1 Certification Exam(s) ]
    SAP [98 Certification Exam(s) ]
    SASInstitute [15 Certification Exam(s) ]
    SAT [1 Certification Exam(s) ]
    SCO [10 Certification Exam(s) ]
    SCP [6 Certification Exam(s) ]
    SDI [3 Certification Exam(s) ]
    See-Beyond [1 Certification Exam(s) ]
    Siemens [1 Certification Exam(s) ]
    Snia [7 Certification Exam(s) ]
    SOA [15 Certification Exam(s) ]
    Social-Work-Board [4 Certification Exam(s) ]
    SpringSource [1 Certification Exam(s) ]
    SUN [63 Certification Exam(s) ]
    SUSE [1 Certification Exam(s) ]
    Sybase [17 Certification Exam(s) ]
    Symantec [134 Certification Exam(s) ]
    Teacher-Certification [4 Certification Exam(s) ]
    The-Open-Group [8 Certification Exam(s) ]
    TIA [3 Certification Exam(s) ]
    Tibco [18 Certification Exam(s) ]
    Trainers [3 Certification Exam(s) ]
    Trend [1 Certification Exam(s) ]
    TruSecure [1 Certification Exam(s) ]
    USMLE [1 Certification Exam(s) ]
    VCE [6 Certification Exam(s) ]
    Veeam [2 Certification Exam(s) ]
    Veritas [33 Certification Exam(s) ]
    Vmware [58 Certification Exam(s) ]
    Wonderlic [2 Certification Exam(s) ]
    Worldatwork [2 Certification Exam(s) ]
    XML-Master [3 Certification Exam(s) ]
    Zend [6 Certification Exam(s) ]





    References :


    Dropmark : http://killexams.dropmark.com/367904/12858175
    Dropmark-Text : http://killexams.dropmark.com/367904/12953569
    Blogspot : http://killexams-braindumps.blogspot.com/2018/01/free-pass4sure-st0-116-question-bank.html
    Wordpress : https://wp.me/p7SJ6L-2RI






    Back to Main Page





    Killexams exams | Killexams certification | Pass4Sure questions and answers | Pass4sure | pass-guaratee | best test preparation | best training guides | examcollection | killexams | killexams review | killexams legit | kill example | kill example journalism | kill exams reviews | kill exam ripoff report | review | review quizlet | review login | review archives | review sheet | legitimate | legit | legitimacy | legitimation | legit check | legitimate program | legitimize | legitimate business | legitimate definition | legit site | legit online banking | legit website | legitimacy definition | pass 4 sure | pass for sure | p4s | pass4sure certification | pass4sure exam | IT certification | IT Exam | certification material provider | pass4sure login | pass4sure exams | pass4sure reviews | pass4sure aws | pass4sure security | pass4sure cisco | pass4sure coupon | pass4sure dumps | pass4sure cissp | pass4sure braindumps | pass4sure test | pass4sure torrent | pass4sure download | pass4surekey | pass4sure cap | pass4sure free | examsoft | examsoft login | exams | exams free | examsolutions | exams4pilots | examsoft download | exams questions | examslocal | exams practice |

    www.pass4surez.com | www.killcerts.com | www.search4exams.com | http://smresidences.com.ph/